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The thermal expansion of ammonium chloride has been measured in the neighborhood of the
order-disorder transition near 242°K. At 1 atm, the transition is found to be first order with
a hysteresis of 0.21 °K. The measured thermal expansion shows sample dependence. The
volume-versus-temperature data are fitted using the theory presented in the first paper of this
series. These fits show qualitative agreement between theory and experiment, but systematic
deviations outside the experimental scatter are found, especially near the transition. Values
of the critical exponents ¢, and o_ of 0.97 and 0.75, respectively, were found to give the best
fit to the data, in striking disagreement with theoretical calculations using the Ising Model.

1. INTRODUCTION

The suggestion that the phase transition of an
Ising system on a compressible lattice might be-
come first order has been made by a number of
workers.!™® Ammonium chloride has been exten-
sively studied in this regard.” Since the work re-
ported here was completed, there has been further
theoretical work on the compressible Ising system
by Baker and Essam,® Wagner,® and Wagner and
Swift.'° In this later work it is shown that if the
lattice spacing is allowed to accommodate locally
to the spin fluctuations then the first-order transi-
tion of the earlier theory goes away.

However, at 1 atm, the transition in ammonium
chloride is first order experimentally. Conse-
quently, a test of these earlier theories for am-
monium chloride is still worthwhile. It is quite
possible that the results of these earlier theories
will find better theoretical justification as time goes
on.

One of the most straightforward tests of the the-
ory of the first paper in this series is to see
whether or not it can account for the volume-ver-
sus-temperature data for ammonium chloride. The
thermal expansion of ammonium chloride has been
measured by a number of workers. A list of ref-

erences to their work has been compiled by Saka-
moto.!* Boiko!? has also made a recent measure-
ment of the thermal expansion by x-ray diffraction.
We undertook to remeasure the thermal expansion
to a higher resolution in order to make a better test
of the theory of the transition.

II. EXPERIMENTAL TECHNIQUE

The temperature of the sample chamber was
stabilized by the following method. The chamber
was a 1-kg cylinder of copper. This cylinder was
suspended in vacuum by two 3-in.-diam 0. 010-in.-
walled stainless-steel tubes. The sample chamber
was surrounded by an annular tank filled with liquid
nitrogen. A copper flange about 15 cm above the
sample chamber provided thermal contact between
the nitrogen tank and the stainless-steel tubes. The
sample chamber was wound with 70 € of nichrome
heater wire. Temperature control then involved
supplying the correct power to the heater to balance
the heat flow to the nitrogen tank.

A thermistor was glued directly to the heater with
thermally conducting epoxy. This thermistor was
placed in one arm of a Wheatstone bridge, whose
voltage source was the reference output of a PAR
JB-5 lock-in amplifier. The off-balance signal of
the bridge went to a PAR CR-4 low-noise pream-
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plifier and then to the lock-in. The output of the
lock-in controlled the heater current by means of
a transistor, thus completing the feedback loop.
Proper adjustment of the lock-in time constant
ensured good proportional control without oscilla-
tion. Control to within a millidegree was possible
for periods of many days.

The temperature was measured by means of a
platinum resistance thermometer, calibrated by
the National Bureau of Standards. The thermome-
ter was fixed in a hole near the center of the sam-
ple chamber by means of Woods metal. The mea-
surement was made by the standard technique using
a Leeds and Northrup K-5 potentiometer and an
NBS-calibrated standard resistor. The repeat-
ability of the measurement was 0. 005 °K while an
independent thermistor showed the sample chamber
to be stable to better than 0. 001 °K.

The two samples were single crystals about 1 cm
in length. They were used to determine the plate
spacing of a 5-pF plane parallel-plate capacitor.
The capacitance was measured by a General Radio
1615-A three-terminal capacitance bridge. This
method of capacitance measurement was suggested
to us by Professor Cole.!® It has the great advan-
tage that all stray capacitances are excluded from
the measurement, making possible measurement
of 5-pF capacitance to six figures without any drifts
due to stray capacitance. The six-figure capaci-
tance accuracy allowed a resolution of 8 X107 in
AL/L given the ratio of capacitor spacing to crys-
tal length that was used.

The design of the framework that translated
changes of the crystal’s length into changes in ca-
pacitor spacing is shown roughly in Fig. 1. The
top plate rested on a fused-quartz ring cut from
quartz tubing. The quartz ring rested on the same
pedestal as the crystal. The crystal was inside
the quartz tubing. A hole was drilled in the crys-
tal, and a shaft extended from the bottom of the
bottom plate through the crystal and then on through
the pedestal on which the crystal sat. A weak
spring under the pedestal pulled the bottom plate
down onto three steel ball bearings between the
bottom of the bottom plate and the top of the crys-
tal.

The thermal contraction of the bottom plate and
the steel ball bearings was compensated for by hav-
ing the crystal sit in a depression in the pedestal.
The depth of the depression was calculated such
that the spacing between the top and bottom plates
would not change with temperature if the crystal
were to have no thermal expansion, Consequently
any effect due to thermal expansion of the frame-
work could be neglected. Estimates of any residual
effect of the framework thermal expansion showed
it to be much smaller than the error introduced by
edge capacitance.
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FIG. 1. Sample holder.

Since guard rings were not used, a few words
must be said concerning the effect of edge capaci-
tance. An expression for the capacitance of a plane
parallel capacitor with square plates is given by

€A 21n(na/d)
-t (14 25572). W

where a?=A is the area of the plates and d is the
plate separation. The second term in Eq. (1) is
the contribution of the edge capacitance. The ca-
pacitor we used actually had circular plates. Cir-
cular plates have a smaller edge-to-surface ratio
than square plates. So if we use this square-plate
result above to calculate an upper bound on the er-
rors due to edge capacitance, we can be fairly sure
that they will not be exceeded for a circular-plate
case,

The capacitor that we used had a plate diameter
of ;in. and a plate separation a little greater than
0.2 mm. These numbers were measured at room
temperature. But they still serve to get us into
the right range of values for a sample calculation
at temperatures near the transition.

We used these numbers to calculate the contri-
bution of the two terms in Eq. (1) to the total ca-
pacitance of an equivalent square capacitor. The
parallel-plate term contributes roughly 5.5 pF,
while the edge term contributes 0.3 pF. So we see
that edge capacitance is about 6% of the parallel-
plate term.

One might think that the fact that the edge ca-
pacitance is so large might make it very difficult
to extract any information from capacitance-ver-
sus-temperature data. However, this does not
turn out to be the case.

The best way to show this is to give the results
of a sample calculation. For example, sample 1
exhibited a capacitance range of from about 4. 96
to 5.65 pF during the experiment, If Eq. (1) de-
scribes the capacitance versus d, then d varied
roughly from 0. 222 to 0,195 mm,

So the sample calculation goes as follows: Equa-
tion (1) was used to calculate C as a function of d
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over the range d=0.225-0.195 mm. The values
of C thus obtained were used to calculate a number
d’ using the relation C=€,A/d’. So for every d
we started with we have a number d’. d’ turned
out to be about 6% smaller than d. But the im-
portant result comes when d’ is plotted against d.
d'is, to a very good approximation, a linear func-
tion of d. A straight line was fitted to the d’-vs-d
plot by the least-squares method. When this was
done, no d’ value was found to fall further than
0.03% from this straight line.

Consequently, it was assumed that it was safe
to ignore the edge capacitance. The values of the
plate separation were simply calculated from the
relation C=€,A/d. For this simplification, a
price was paid. The price is that the normaliza-
tion of the experimental d-vs-T curve such as the
one plotted in Fig. 2 is only known to within about
6%. However, it is felt that there would be no
systematic error in the shape of the d (T) curve
greater than 0.03% over the whole range.

The true L(T) is related to our d (T) by a linear
transformation L(T)=Ad(T)+ B. Since the theory
we seek to test preserves its form under such a
transformation, no attempt was made to do away
with the 6 % uncertainty mentioned above. However,
d(T) was converted to AL(T)/Ly=[dy-d(T)]/L,
before fitting to the theory. d; was picked arbi-
trarily to make AL(T)/L, be positive for points
above the transition and negative for points below
the transition. L, was the room-temperature length
of the crystal reduced by about 0.5% to reflect the
approximate length of the crystal near the transi-
tion. Again, it should be stated that the AL(T)/L,
data presented here are sufficient to test any theory
that depends only on the shape of the curve but not

its absolute normalization. The actual tables of
data can be obtained from University Microfilms. !

After the set point of the temperature controller
was changed, the approach to equilibrium could be
seen by watching the capacitance value relax to its
new value, A few degrees away from the transi-
tion, this would take about a $ h. Very near the
transition it would take many hours. Consequently,
an experimental run would usually take about three
weeks.

When taking points above but very near the tran-
sition on a decreasing temperature run the relax-
ation time increases slowly as the transition is ap-
proached. On continuing to take points on the de-
creasing temperature run, finally a temperature
was reached where a further decrease in tempera-
ture of only a fraction of a millidegree would start
a relaxation that would not stop for a week or more.
The point before this last increment in temperature
is the last point used for the fit to the data above
the transition. This sudden discontinuity in relaxa-
tion time also takes place on an increasing tem-
perature run, except that in this case it takes place
at a temperature 0. 21 °K higher.

We assumed that these sudden discontinuities in
relaxation time are associated with the formation
of the ordered phase on the decreasing-tempera-
ture runs and the formation of the disordered phase
on the increasing-temperature runs, For a quarter
of a degree or so after the discontinuity the crystal
seems to be a mixture of the two phases.

This is illustrated in Fig. 2. Figure 2 is a plot
of some of the points of sample 2, Sample 1 would
look similar, The circles are the points of a de-
creasing temperature run and the triangles are
points of the following increasing temperature run.
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The points associated with the relaxation-time dis-
continuities are indicated. It can be seen that the
points immediately following the relaxation-time
discontinuity in sequence do not have the same vol-
ume that they would have if the temperature had
been approached from the opposite direction.
These points are assumed to represent the coex-
istence of the two phases and are not used in the
fits to the theory.

A further observation should be made with re-
spect to Fig. 2. It is clear from the figure that
the capacitor-plate separation is larger after the
crystal is cycled through the transition. This is
also true of sample 1. A possible explanation for

this is that the crystal becomes plastic and de-
forms under the slight pressure of the capacitor-
plate mounting springs as the crystal goes through
the transition. This displacement is allowed for
by adding an extra free parameter to the fit.

When the data from the two samples are normal-
ized to each other far from the transition a devia-
tion between the samples becomes apparent. How-
ever, the transition still comes at the same place in
temperature to within 0. 01 °K as defined by the
relaxation-time discontinuities. Figures 3 and 4
are above and below the transition, respectively.
The circles represent some of the points of sam-
ple 1 and the triangles some of the points of sam-
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ple 2. The extent of this variation can be seen in
the two figures.

III. COMMENTS ON DATA

The absolute fractional change in length of the
crystal from 250 to 232 °K was 0.30+0.01% for
sample 1 and 0.31+0.01% for sample 2. This
estimate of error includes the edge capacitance
effect. Lawson’s!® data show an all-over variation
of 0.50% over this same temperature range.
Boiko!? obtains 0.429% over the same range. Dini-
chert’s!® data are consistent with the data of Boiko.

The absolute fractional discontinuity in length
on going through the transition is much harder to
define and compare. First, the L(T) curve is very
steep at the transition. So the size of the apparent
discontinuity will depend on how near to the transi-
tion the last data point was taken. Second, the
next data point taken after going through the transi-
tion is characteristic of the coexistence of the two
phases. The curve for a quarter of a degree or
so after going through the transition is not repro-
ducible. Consequently, the best measure of the
jump at the transition is to compare the last point
taken above the transition on a decreasing temper-
ature run with the last point taken below the transi-
tion on an increasing temperature run. For both
samples 1 and 2, there is a discontinuity in the

length of the crystal of 0.08 % computed in this
way. No such number can be computed for Law-
son’s or Bioko’s data since they show data taken
only in one direction. Dinichert shows a discon-
tinuity of 0.14%. Smits, Muller, and Kroger!’
show 0.13% for the discontinuity. The best num-
ber of this type for the data of Thomas and Stave-
ley'® is about 0.1%. This number is difficult to
estimate since Thomas and Staveley show equilib-
rium points on portions of the curve that we experi-
mentally found to be thermodynamically unstable.
Their data points are distributed in such a way that
there is no way to judge which point is the last
point taken above the transition and which point is
the last point taken below the transition.

As mentioned above the fractional changes in
length from 250 °K reported by various workers
disagree. So it is not immediately clear how to
compare the shapes of the curves reported by dif-
ferent workers. Figure 5 is an attempt in this di-
rection, Our L(T) data between ~ 36 and - 34 °C
were normalized to Dinichert’s x-ray diffraction
data in the same range. This was done by deter-
mining by the method of least squares the linear
transformation L'(T)= aL(T)+ b that best brought
our data in coincidence with Dinichert’s data be-
tween these two temperatures. Then this linear
transformation was applied to our data over the
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whole range of temperature. The result is the I=dy Vo"/V". (3)

dashed curve in Fig. 5. The solid curve is Dini-
chert’s data.

It is interesting to note that when this sort of
normalization is made to our data the fractional
change in length between 250 and 232 °K shown by
our data now becomes greater than that of Dinichert.
Also there is an obvious discrepancy in the 3 °K
range immediately below the transition.

When a similar normalization is made to Law-
son’s data, the two curves virtually coincide below
the transition. But our over-all fractional change
in length from 250 to 232 °K now becomes larger
than Lawson’s. In addition to this, the slope of our
curve comes out noticeably greater than Lawson’s
above the transition.

So it seems fair to state that the three sets of
data, Dinichert’s, Lawson’s, and the data reported
here, are not comparable in detail. However,
Boiko’s data do compare well with Dinichert’s.
Boiko and Dinichert took data by means of x-ray
diffraction. The other data were taken by measur-
ing the length of bulk samples. So the difficulty
seems to lie with measurements on bulk samples.
How these difficulties arise would be interesting
to find out.

But

IV. DATA ANALYSIS

Equation (17) of the first paper of this series
(preceding paper, this issue) for the case of zero

pressure is
AV 1 dJ J(V))_
@)

70'30(T‘T0)"Po’<ro KT 7 qV

Equation (22) of the first paper is

Then to a first approximation we have

1. dJ n
Jdv Vv, ® @

Then Eq. (1) can be rewritten

ﬂ— B T+ (B0T0+P0KTO)+—-° U,(ig?) =0.
(5)

This gives AV as a function of T implicitly unless
an explicit form for U; is given. Two different
forms for U, were tried. The first was the U; ob-
tained by Wakefield!? from the high- and low-tem-
perature expansion of the simple cubic Ising model
partition function. In Fig. 6 the curved solid line
represents the best fit obtained using Wakefield’s
U;. The straight line is the singular line. The
triangles are some of the data points used to ob-
tain the fit, It should be noted that the two seg-
ments of the curved line do not join smoothly at
the singular line. This is a reflection of the fact
that Wakefield’s U, is not continuous at T, for the
rigid lattice. This fit overestimates the tempera-
ture width of the hysteresis by approximately a
factor of 8.

The form for U, that produced the best fit was

Ur=Up U €|+, ®)
where € is as given in the first paper:
€=(T=Ty)/To+nAV/V, . (?)

The plus and minus refer to the regions above and
below the singular line, respectively.
Using this form for U;, Eq. (4) becomes
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AV/Vy- By T+ Cy£C,|€|*=0, ®)
where C; and C, are just the lumped constants

C1= (B To = Py, + Up) ©)

C.=nkp U,/ V, (10)

With Eq. (8) there are eight fitting parameters g,
Cy, C,y, C, Ty, n, a@,, and a_, This does not count
the base-line shift mentioned previously that has to
be thrown in to take care of the apparent change in
length the crystal suffers on going through the tran-
sition. To arrive at a fit to the data the function

x? defined by

N
1 A AV 2
xzzNA—S :Zx[(v()a—BOT‘+CI+C'|€‘II-%]

L 259 ]
+ — | =B T;+C;-C_|€;|}-%-
NB—G o) VO : 30 i 1 -l l'

1)

was minimized on the computer with respect to the

TABLE I. Set of fitting parameters for sample 1.

fitting parameters. The first sum is over the points
taken above the transition and the second over the
points below the transition. N, is the number of
points above the transition and Ny is the number of
points below the transition. As mentioned before,
the points used above the transition were taken on

a decreasing temperature run. The points used
below were taken on an increasing temperature run.

It was necessary to fit both sides of the transition
simultaneously as shown in Eq. (11). If only one
side of the transition were fitted at a time, the best
fit would place the singular line in a position with
many of the points on the other side of the transition
on the wrong side of the singular line. It was found
that the best way to force the singular line to pass
properly through the hysteresis loop was to fit both
sides of the transition simultaneously.

Table I shows the set of parameters that minimize
x? for the data of sample one. Table II is the set
that minimizes x2 for sample 2. Figure 7 is a
graph of the calculated curve for sample 1 using the
parameters of Table I. As many of the data points

TABLE II. Set of fitting parameters for sample 2.

Parameter Value
By 1.686 x10"4/°K
(o) 2.314x10%3
C, 2.628 x10-3
C. 7.974 x103
T, 242.48°K
n 0.430
a, 0.967
a_ 0.746

Parameter Value
By 1.551 x10°4/°K
(o} 1.656 x10-3
c, 1.838x10"°
C 9.779x10"3
T, 242,55 °K
n 0.767
a, 0.963

o 0.746
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are shown as possible. The analogous graph for were found. To make a complete search of the
sample 2 would look similar. Figures 8 and 9 are eight-parameter x? hyperspace would have been
expanded scale graphs that show the deviation be- prohibitive in computer time. What was actually
tween the data and the fit near the transition for done was to start with what seemed to be reason-
samples 1 and 2, respectively. The diagonal able starting values for the parameters and then
straight lines in Figs. 6—9 are the appropriate sin- let the computer find the nearest minima of x*
gular lines given by the fits. The size of the tri- automatically.
angles in the graphs bears no relation to the ex- Attempts were made to find minima closer to the
perimental resolution, which is much greater than commonly accepted Ising model value of 3 for a.
the graphs can show. This was done by initially constraining & to be 3
The function x2 has many other minima. The and finding a minimum of x2 for the remaining pa-
ones presented here are only the lowest ones that rameters. Then the constraint was taken off of
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TABLE III. Comparison of fitting parameters obtained
from the specific-heat and thermal-expansion measure-
ments.

Parameter Schwartz’s From From
work Table I Table II
a, 0.826 0.967 0.963
a_ 0.673 0.746 0.746
nBy CK-1) 4.83x10"* 0.725x10"*  1.19x10"4
a,/a. 0.128 0.400 0.227

a and 2 minimum in all parameters sought. The
minima that were found in this way were orders
of magnitude worse than the best ones that are
quoted above, Fits were also sought for the case
of @ equal to zero. This is the case where the
singular term in Eq. (8) is replaced by €1In(l€|).
The fits found in this case were equally bad.

In the work of Schwartz?® on the heat capacity of
ammonium chloride the same theory of the transi-
tion is used to fit the heat-capacity data. Conse-
quently, some of the parameters obtained from the
heat-capacity data can be compared to the values
of the same parameters obtained from the thermal-
expansion measurement, Table III is a list of such
parameters. The values of a,/a_ in the table are
obtained by using the values of C, by C_ in Tables
I and II.

V. CONCLUSIONS

It should be noted that none of the fits shown in
the tables are good fits in the x2 sense. In all
cases, there is a systematic deviation of the ex-
perimental points from the theoretical line. This
deviation is much larger than the systematic error
arising from edge capacitance. In both this work
and the work of Schwartz on the heat capacity,
various samples show differences in behavior.

The large a’s may indicate that first-order na-
ture of the transition actually changes the degree
of singularity of the transition. Perhaps the hypo-
thesis of weak coupling goes too far, and local
fluctuations in the lattice parameter must be taken
into account in calculating the singular terms.?!

It is unlikely that the number of terms included
in the expansion of the lattice free energy and in the
expansion of € is insufficient since the major de-
viation between theory and experiment take place
near the singular line.

It is possible that sample defects may change the
nature of the singular terms in the theory from the
forms that were tried in the fitting procedure. For
example, in the case of magnetic transitions much
better fits can often be found near the transition
by assuming that there is a distribution of T,’s.
We have not attempted to include such effects here.
To do so would be rather complicated. It would
involve more than introducing a distribution of
critical lines. Equation (25) would have to be
thought of as true only locally. Then to get the to-
tal equilibrium volume Eq. (25) would have to be
averaged over the crystal. Since the pressure en-
ters into Eq. (25), this average could not be done
until the local strains were known. In any case,
this sort of treatment has the effect of making the
singularity weaker in the neighborhood of the tran-
sition. It seems that in our case what is required
for a better fit is a stronger singularity.

But in any case, further attempts to apply theo-
ries of this type to ammonium chloride should
await a clear understanding of the sample depen-
dence observed in this experiment and that of
Schwartz. Ammonium chloride is a very soft and
easily damaged material. It would be interesting
to study other systems such as MnAs* that under-
go first-order transitions to see whether the large
@’s found in this experiment and the experiment of
Schwartz are also found there.
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